

Biofilm Control in HVAC & Cooling Systems

Ionic Nano Copper kills bacteria ,prevent algae and reduces corrosion

A product of Advance Greentech Solutions

Ionic Nano Copper

Indication of Biofouling – How to detect

- Visual and tactile observations: colored or slippery slime deposits
- Diagnostics: Bacterial counts (plates, dipslides), indicating cultures (e.g., SRB), ATP, on-line biofilm monitors, deposit sample analysis by loss on ignition
- System performance: inefficient cooling, reduced heat transfer, electrical load

What biofilm could cause at HVAC System

- Energy cost increase
- Hard Maintenance work
- Electrical overload of pump (trip off)
- Health danger(Legionella)
- Equipment life time(Corrosion)

Cost Impact of Microbial Fouling

On Condenser Biofilm forms an insulating layer 1 mm biofilm thickness > 13 % energy loss

Chiller Condenser

Potential Health Danger

Legionella Bacteria

THE KILLERS

July 12 First South Bronx Legionnaires' case is diagnosed.

July 18 The number of diagnosed cases grows to 12.

July 20 City officials begin interviewing patients to determine what they have in common and pinpoint a source of the outbreak.

July 27 The number of diagnosed cases grows to 40.

July 28 City begins to sample and test water from cooling towers in the South Bronx.

July 29 The city tells the public about the outbreak and discloses that two patients have died. The first towers to test positive for Legionella bacteria are cleaned. July 30 The number of new cases peaks, as 13 are diagnosed in a single day.

July 31 City gets test results for all 17 cooling towers in the outbreak area. Five cooling towers test positive: at Lincoln Hospital, Concourse Plaza mall, the Opera House Hotel, Streamline Plastics Co. and a Verizon building. Aug. 1 City reveals a fourth Legionnaires' patient has died and that reported cases have risen to 65. Cleaning is completed in all five contaminated buildings.

Aug. 3 City announces that the outbreak's death toll has climbed to seven.

Aug. 4 The number of reported cases grows to 86.

WHAT YOU NEED TO KNOW

Q What is Legionnaires' disease?

A It's a severe form of pneumonia caused by a bacteria grown in warm water for instance, in hot water tanks and cooling towers. Q How do you get Legionnaires' disease?

When you breathe in a mist containing the bacteria. You do not catch it from another infected person.

What are the symptoms?

Victims suffer shortness of breath, high fever, muscle aches, headaches and coughing.

Q What are treatment options?

A The disease can be treated with antibiotics.

Gram-positive | Ex. *Streptococcus* Thick peptidoglycan layer absorbs surrouding materials, even toxins. Easier to kill, develops resistance slower.

Gram-negative | Ex. *E. coli* Thin peptidoglycan layer covered by multiple thin layers of membrane which eject toxins. Harder to kill, quick to develop resistance.

Cooling Tower – Chiller Condenser Water Tank Pump

Biofilm in the water system

Biofilm in the piping system

Microorganisms settle on wet surfaces and over time form a biofilm there. After several days, a biofilm can have already reached its stationary phase when continuous release of germs takes place.

Biofilm in Industrial Process Cooling

Microbial Influenced Corrosion

- APB Acid Producing Bacteria
- IRB Iron Depositing Bacteria
- Sulfate Reducing Bacteria

Remove existing biofouling deposits Prevent the formation of new deposits

Biofilm build up every where

Ionic Nano Copper stops biofilm build up

Ionic Nano Copper

Common Name of Active Ingredient	Copper Sulphate Penta-Hydrate		
Chemical Name of Active Ingredient (IUPAC I designation)	Present as Copper Sulphate Penta-Hydrate		
Formula (empirical and structural)	CuSO4·5H2O		
Production Date	08/12/2016		
Expiry Date	08/12/2026		

- Copper Sulphate Penta-Hydrate CAS# 7758-98-7
- Sulphuric Acid CAS # 7758-99-8
- Odor:

Chemical

Name

&

Properties

- Appearance: (Physical state, & color)
- Odor threshold concentration: (ppm)
- Density/specific gravity: (H2O = 1)
- Vapor pressure at 200 C: (mmHg)
- Vapor density: (Air = 1)
- Evaporation rate:
- Boiling point: (C/F)
- Freezing point: (C/F)
- pH:
- Lead (as Pb)
- Cadmium (as Cd)
- Arsenic (as As)

5% to 5.3% 2.8% to 3.1 Mild Clear, blue liquid Not applicable 1.19 0.1 1 N/A $104^{0}C$ $00^{0}C$ 1.2 (buffered) ND ND

Objective of Ionic Nano Copper

- Improved Biofouling Control
- Cost effective biofouling control
- Enhanced Corrosion Control
- Enhanced Scale Control

Clean cooling tower

The evidence from decades of scientific research is very clear. *Legionella pneumophila* resides primarily in biofilms in building and industrial water systems.

Biofouled cooling tower

90% of bacteria lives in biofilm

- Biofilms protect the pathogenic bacteria, making them hard to kill.
- Hiding in biofilms, bacteria can spread throughout the body.
- Large, sticky biofilms resist the attack of the immune system and antibiotics

Ionic Nano Copper stops biofilm formation

Clean Water and Biofilm Contamination

A dirty pipe puts your drinking water quality at risk of contamination

Biofilm growth

Phase	Time	
Colonization	15 minutes	
Groth detection	2 days	
Biofilm formation (minimum)	5 days	
Maximum biofilm growth (8-10 cells thick)	14 days	
Full Mature Biofil Matrix	31 – 40 days	

Destroying the biofilm support the goal of getting a more effective cooling towers in two ways.

- 1. Control biofilm growth is equal to Legionella control.
- 2. Control biofilm growth increase the efficiency

a Ruoroscons, 0 h

2 days

Legionella in the Water System

- evaporative cooling water systems,
- evaporative condensers
- closed-circuit fluid coolers
- cooling towers.

Colorized scanning electron micrograph (8000X) depicting a large grouping of Gram-negative *Legionella pneumophila* bacteria (Source: Centers for Disease Control).

Seek & Destroy with biostatic effect

Ionic Nano Copper as biocide,fungicide and algaecide

Ionic Nano Copper Size

QuaDrop⁶⁰

Smaller size causes higher electrostatic

"Disruptive force for breaking cell membrane"

Ionic Nano Copper – Seek & Destroy Mission

Comparison of Technologies

Comparison of technologies

	UV	Sodium Hypochlorite	Chlorine Dioxide	Ozone	Ionic Nano Copper
Prophylactic effect	No	Yes	Yes	Limited	Yes
Destroys biofilms	No	Limited	Yes	Limited	Yes
Safe for operators	Yes	No	No	Yes	Yes
Effective against legionella colonization	No	Yes	Yes	Limited	Yes
Environmentally safe	Yes	Yes	Yes	Yes	Yes

Ionic Nano Copper targets bacteria & algae

Most suspended solids are made up of inorganic materials, though bacteria and algae can also contribute to the total solids concentration 3.

The Effect on bacteria & algae reduction

Water analysis Parameter	Untrested Sample	Sample treated with INC (3days)	Improvement
Color	70	5	93 %
Turbidity	11.2	3.55	68 %
pT@25 C	8.4	7.67	
Total Alkalinity	64	11.4	82 %
Total Suspended Solid	78	5	94 %
BOD5	7	4	43 %

Sample Treated with Ionic Cupric Copper After 3 day

Sample Untreated

Water source: man made lake

Dilution Method and Dosage

Cost Effective Prevention of Biofilm and Corrosion

Ratio 1	Ratio 1:60.000 Concentration 1 ppm			
Concent				
		Ionic Nano		
Water	Water in	Copper in		
in M3	Liter	mL		
100	100,000	1,667		
200	200,000	3,333		
300	300,000	5,000		
400	400,000	6,667		
500	500,000	8,333		
600	600,000	10,000		
700	700,000	11,667		
800	800,000	13,333		
900	900,000	15,000		
1000	1,000,000	16,667		
2000	2,000,000	33,333		
3000	3,000,000	50,000		
3001	3,001,000	50,017		
4000	4,000,000	66,667		
5000	5,000,000	83,333		
1 M3=10				
1 L=1000				

Patia 1.60 000

Ratio 1:60.000 (concentration 1 ppm)						
		Ionic Nano				Ionic Nano
Water	Water in	Copper in		Water	Water in	Copper in
in M3	Liter	mL		in M3	Liter	mL
1	1,000	17		16	16,000	267
2	2,000	33		17	17,000	283
3	3,000	50		18	18,000	300
4	4,000	67		19	19,000	317
5	5,000	83		20	20,000	333
6	6,000	100		21	21,000	350
7	7,000	117		22	22,000	367
8	8,000	133		23	23,000	383
9	9,000	150		24	24,000	400
10	10,000	167		25	25,000	417
11	11,000	183		26	26,000	433
12	12,000	200		27	27,000	450
13	13,000	217		28	28,000	467
14	14,000	233		29	29,000	483
15	15,000	250		30	30,000	500
1 M3=10	000 L					
1 L=1000 mL						

- Administer & maintain 1 ppm •
- Don't go below 0,1 ppm •

Dilution Methode

To obtain 1 ppm, add 1 part of INC [®]-IONIC NANO COPPER to 60,000 parts of system water or 1:60,000 dilution.

Example 1: For 1,000 liters of pool water, use 17 ml of INC (QuaDrop).

Example 2: For 100 M3 (100.000 L) of system water, use 28 ml to 1.667 ml of INC (QuaDrop)

Ionic Nano Copper is self mixing

No precipitation (No setlling of Cu++)

Water soluble

1 ppm of stable copper ions

5000 ppm

Ionic Cupric Copper does not dissipate

it is ONLY used up by biological demand & no other matters

Ionic Cupric Copper is uniformly self dispersing

Traditional copper products settle out over time

When is periodic disinfection necessary?

It is for systems that:

- That have process leaks
- That have heavy biofouling
- That use reclaimed wastewater as makeup
- That have been stagnant for a long time
- When the total aerobic bacteria counts regularly exceed 100,000 CFU/ml
- When Legionella test results show greater than 100 CFU/ml

After Biofilm Control Program Treatment

After a biofilm control program treatment, you should also see *an* increase in **suspended** solids, ATP, and bacterial counts in the bulk water as deposits are released. After removal of the released deposits by filtration or blowdown, repeated treatment should show decreasing evidence of biofouling.

SOLIDS CLASSIFICATION

Suspended Solids

One agent for two challenges – it fights the planktonic bacteria and the biofilm

Advantage of Ionic Nano Copper

Ionic Nano Copper Benefit

- High efficacy in very low dosage
- Removes and prevents biofilms
- Totally Chlorine Free (TCF)
- Inhibits Microbiologically induced corrosion
- Non-foaming
- Compatible with glycol and brine systems

Ionic Nano Copper's penetration into biofilm

Corrosion is evidence of biofouling

INC penetrates into biofilm & kill bacteria INC destabilizes biofouling deposits & removes from surface Cleaner surfaces with less MIC & better heat transfer

- Special handling & storage of chemicals
- Dosing and balancing of two chemicals hassle

Existing Practice – The use of two chemicals

IOCIDE

BIOCIDE BIOCID

In practice higher concentration of biocide is used – higher cost

BIOCIDE

BIOCIDE

BIOCIDE

BIOCIDE

BIOC

Last but not Least...

Chemical Treatment

66 When using Ionic Nano Copper, **Please verify** your previous system setting"

Advanced Greentech Solutions Pte. Ltd - Manufacturer

Distribution with partners